

Explain your answers with neat sketches when applicable. Assume all computations are made on Helmert1906 (a = 6378.2 km, $f = \frac{1}{298.3}$). Also, mean radius of the earth is R = 6371 km.

Assignment (1) – A geodetic Review

- 1. Given the following information, calculate the length on a meridian between two points:
- Latitude of Point A (φ_A) = 40.7128 degrees
- Latitude of Point B (φ_B) = 34.0522 degrees
- 2. Calculate the length on a parallel between two points using the formula for length on parallels:
- Latitude of the points $(\varphi) = 60$ degrees
- Longitude of Point A (λ A) = -75 degrees
- Longitude of Point B (λ B) = -80 degrees
- 3. Compare the lengths on meridians between two pairs of points, considering their latitudes:
- Latitude of Point A1 (φ_{A1}) = 0 degrees
- Latitude of Point B1 (φ_{B1}) = 30 degrees
- Latitude of Point A2 (φ_{A2}) = 10 degrees
- Latitude of Point B2 (φ_{B2}) = 50 degrees
- 4. Compare the lengths on parallels between two pairs of points, considering their longitudes:
- Latitude of the points $(\varphi) = 45$ degrees
- Longitude of Point A1 (λ _A1) = -100 degrees
- Longitude of Point B1 (λ _B1) = -80 degrees
- Longitude of Point A2 (λ _A2) = -110 degrees
- Longitude of Point B2 (λ _B2) = -90 degrees
- 5. Compare the length on a meridian and the length on a parallel between two points:
- Latitude of the two points $(\varphi) = 20$ degrees
- Longitude of Point A (λ_A) = -60 degrees
- Longitude of Point B (λ_B) = -80 degrees
- 6. Given the following measurements of a spherical triangle:
- Angle α = 45° 15' 30"
- Side b = 16 km
- Angle $\beta = 30^{\circ} 45' 15''$

Calculate the spherical excess of the triangle.

- 7. Given the following measurements of a spherical triangle:
- Side a = 9 km
- Angle α = 50° 30' 20"
- Angle $\beta = 70^{\circ} 15' 45''$
- Calculate the spherical excess of the triangle.